DPP - 4 (Electrostatics)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/51

Video Solution on YouTube:-

Written Solution on Website:-

https://youtu.be/nhmNZWuPOH4

https://physicsaholics.com/note/notesDetalis/40

Q 1. A charge $+Q$ at A produces electric field E and electric potential V at D. If we now put charges $-2 Q$ and $+Q$ at B and C vertices of a parallelogram $A B C D$, then the magnitude of electric field and potential at D will be:

(a) E and zero
(b) zero and V
(c) $\sqrt{2} E$ and $\frac{V}{\sqrt{2}}$
(d) $\frac{E}{\sqrt{2}}$ and $\frac{V}{\sqrt{2}}$

Q 2. A point charge $q_{1}=+2 \mu C$ is placed at the origin of co-ordinates. A second charge, $q_{2}=$ $-3 \mu C$, is placed on the x-axis at $x=100 \mathrm{~cm}$. At what point (or points) on the x-axis will the absolute potential be zero?

(a) $x=40 \mathrm{~cm}$ and $x=-200 \mathrm{~cm}$
(b) $x=40 \mathrm{~cm}$ only
(c) $x=-200 \mathrm{~cm}$ only
(d) $x=80 \mathrm{~cm}$ only

Q 3. Two charges $q_{1}=5 \times 10^{-8} \mathrm{C}$ and $q_{2}=-3 \times 10^{-8} \mathrm{C}$ are located 16 cm apart. At what point(s) on the line joining the two charges is the electric potential zero? Take the potential at infinity to be zero:
(a) 10 cm from charge q_{1}
(b) 10 cm from charge q_{2}
(c) 6 cm from charge q_{1}
(d) None of these

Q 4. In a regular polygon of n sides each corner is at a distance r from the centre. Identical charges are placed at $(\mathrm{n}-1)$ corners. At the centre, the intensity is E and the potential is V . The ratio V/E has magnitude:
(a) $n r$
(b) $r(n-1)$
(c) r
(d) $-\frac{r}{n}$

Q 5. Electric potential is given by $V=6 x-8 x y^{2}$. Then electric force acting on 2C point charge placed at the origin will be:
(a) 2 N
(b) 6 N
(c) 8 N
(d) 12 N

Q 6. Electric potential ' v ' in space as a function of co-ordinates is given by, $v=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$. Then the electric field intensity at $(1,1,1)$ is given by:
(a) $-(\hat{\imath}+\hat{\jmath}+\hat{k})$
(b) $\hat{\imath}+\hat{\jmath}+\hat{k}$
(c) Zero
(d) $\frac{1}{\sqrt{3}}(\hat{\imath}+\hat{\jmath}+\hat{k})$

Q 7. Two equipotential surfaces of 40 V and 50 V potential are separated by 2 cm . If the electric field present between them is uniform, then its strength is:
(a) $200 \mathrm{~V} / \mathrm{m}$
(b) $1000 \mathrm{~V} / \mathrm{m}$
(c) $400 \mathrm{~V} / \mathrm{m}$
(d) $500 \mathrm{~V} / \mathrm{m}$

Q 8. Electric field in a region is given by $E=\left(\frac{M}{x^{3}}\right) \hat{\imath}$, then the correct expression for the potential in the region is (assume potential at infinity is zero)
(a) $\frac{M}{2 x^{2}}$
(b) $M x^{2}$
(c) $\frac{M}{3 x^{4}}$
(d) None of these

Q 9. Variation of electrostatic potential along x-direction is shown in the figure. The correct statement about electric field is:

(a) x-component at point B is maximum
(b) x-component at point A is towards positive x-axis
(c) x-component at point C is towards negative x-axis
(d) x-component at point C is towards positive x-axis

Q 10. In a certain $0.1 \mathrm{~m}^{3}$ free space, electric potential is found to be 5 V throughout. What is the electric field in this region?
(a) $5 \mathrm{~N} / \mathrm{C}$
(b) $-5 \mathrm{~N} / \mathrm{C}$
(c) zero
(d) Cannot be determined

Answer Key

Q. 1	a	Q. 2	a	Q. 3	a	Q. 4	b	Q. 5	d
Q. 6	b	Q. 7	d	Q. 8	a	Q.9	d	Q.10	c

